Jump to this Activity »
Responding to Climate Change

King's Centre for Visualization in Science

This is the ninth and final lesson in a series of lessons about climate change. This lesson focuses on the various activities that humans can do to mitigate the effects of climate change. This includes information on current and predicted CO2 emission scenarios across the globe, alternative energy sources, and how people are currently responding to climate change. Importantly, this lesson is motivating in showing students that they can make a difference.

Activity takes about two 50-minute class periods.

Learn more about Teaching Climate Literacy and Energy Awareness»

ngssSee how this Activity supports the Next Generation Science Standards»
High School: 3 Performance Expectations, 6 Disciplinary Core Ideas, 9 Cross Cutting Concepts, 5 Science and Engineering Practices

Notes From Our Reviewers The CLEAN collection is hand-picked and rigorously reviewed for scientific accuracy and classroom effectiveness. Read what our review team had to say about this resource below or learn more about how CLEAN reviews teaching materials
Teaching Tips | Science | Pedagogy | Technical Details

Teaching Tips

About the Science

  • The opening carbon footprint learning tool allows users to change CO2 emission around the world. Users are then able to run a model to visually examine how these CO2 emissions impact carbon levels in the ocean, the atmosphere, the biosphere, and the soil.
  • In the carbon stabilization wedge learning tool, users are able to visualize how altering lifestyles and increasing alternative energy sources can reduce emissions.
  • No sources are provided for the data used to develop these learning tools.
  • Comments from expert scientist: It is a very good outline of the role of carbon-dioxide in the climate system, and organizes ways to mitigate the carbon footprint. I liked the CO2 footprint and Carbon stabilization learning tools in general, as they provide a hands-on approach to the issues involved.

About the Pedagogy

  • This resource does a great job at encouraging students that there are solutions to help mitigate the effects of climate change and to reduce GHG emissions.
  • Questions posed throughout the lesson encourage students to think critically about potential solutions and difficulties in implementing those solutions.
  • Two learning tools or applets - carbon footprint and stabilization wedges - engage students in how their choices impact the climate system.

Technical Details/Ease of Use

  • Teachers work alongside students throughout lesson.
  • No separate guide for educators.
  • All the applets run smoothly and greatly enhance the final levels of understanding for students.

Next Generation Science Standards See how this Activity supports:

High School

Performance Expectations: 3

HS-ESS3-2: Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.

HS-ESS3-4: Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.

HS-ESS3-5: Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.

Disciplinary Core Ideas: 6

HS-ESS2.D4:Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere.

HS-ESS3.A2:All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks as well as benefits. New technologies and social regulations can change the balance of these factors.

HS-ESS3.B1:Natural hazards and other geologic events have shaped the course of human history; [they] have significantly altered the sizes of human populations and have driven human migrations.

HS-ESS3.C2:Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation.

HS-ESS3.D1:Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts.

HS-ESS3.D2:Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities.

Cross Cutting Concepts: 9

Patterns, Cause and effect, Scale, Proportion and Quantity, Systems and System Models, Energy and Matter, Structure and Function, Stability and Change

HS-C1.2:Classifications or explanations used at one scale may fail or need revision when information from smaller or larger scales is introduced; thus requiring improved investigations and experiments.

HS-C2.2:Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system.

HS-C3.5:Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth).

HS-C4.4:Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models.

HS-C5.2:Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system.

HS-C5.4: Energy drives the cycling of matter within and between systems.

HS-C6.1:Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem.

HS-C7.1:Much of science deals with constructing explanations of how things change and how they remain stable.

HS-C7.4:Systems can be designed for greater or lesser stability.

Science and Engineering Practices: 5

Planning and Carrying Out Investigations, Analyzing and Interpreting Data, Using Mathematics and Computational Thinking, Constructing Explanations and Designing Solutions, Engaging in Argument from Evidence

HS-P3.5:Make directional hypotheses that specify what happens to a dependent variable when an independent variable is manipulated.

HS-P4.1:Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.

HS-P5.2:Use mathematical, computational, and/or algorithmic representations of phenomena or design solutions to describe and/or support claims and/or explanations.

HS-P6.3:Apply scientific ideas, principles, and/or evidence to provide an explanation of phenomena and solve design problems, taking into account possible unanticipated effects.

HS-P7.1:Compare and evaluate competing arguments or design solutions in light of currently accepted explanations, new evidence, limitations (e.g., trade-offs), constraints, and ethical issues

Jump to this Activity »