Jump to this Static Visualization »
Gallery of Sea Level Changes

Robert A. Rohde, Global Warming Art

This resource is no longer officially part of our collection This resource has been removed from our collection, likely because the original resource is no longer available. If you have further information about the link (e.g. a new location where the information can be found) please let us know.

You may be able to find previous versions at the Internet Archive.

Set of annotated graphs indicating sea level change observed and projected (projections from IPCC 2001).

Learn more about Teaching Climate Literacy and Energy Awareness»

ngssSee how this Static Visualization supports the Next Generation Science Standards»
Middle School: 2 Disciplinary Core Ideas, 5 Cross Cutting Concepts, 6 Science and Engineering Practices
High School: 6 Disciplinary Core Ideas, 4 Cross Cutting Concepts, 4 Science and Engineering Practices

Climate Literacy
About Teaching Climate Literacy

Sea level rise and resulting impacts is due to melting ice and thermal expansion and increases the risk
About Teaching Principle 7
Other materials addressing 7a

Notes From Our Reviewers The CLEAN collection is hand-picked and rigorously reviewed for scientific accuracy and classroom effectiveness. Read what our review team had to say about this resource below or learn more about how CLEAN reviews teaching materials
Teaching Tips | Science | Pedagogy | Technical Details

About the Science

  • A series of graphs that show sea levels of the recent past and future predictions on changes in sea level.
  • Comments from expert scientist: Resource needs more context to be useful, including attribution and locations. Sea level Rise Maps Gallery These maps represent what is known as “bathtub models” in which future global sea level rise is projected onto the present day elevation contours of a coastal region. These kinds of maps are useful only for coastal regions that are vertically stable. Many of the world’s coasts are subject to vertical change (subsidence, uplift, glacial isostatic rebound or collapse). In such cases these maps can be quite misleading.

About the Pedagogy

  • Graphs can be downloaded and used individually or as a gallery. It is a visualization of data - how it is used is up to the teacher/learner.

Next Generation Science Standards See how this Static Visualization supports:

Middle School

Disciplinary Core Ideas: 2

MS-ESS2.D1:Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns.

MS-ESS2.D3:The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.

Cross Cutting Concepts: 5

Patterns, Cause and effect

MS-C1.2: Patterns in rates of change and other numerical relationships can provide information about natural and human designed systems

MS-C1.3: Patterns can be used to identify cause and effect relationships.

MS-C1.4:Graphs, charts, and images can be used to identify patterns in data.

MS-C2.2:Cause and effect relationships may be used to predict phenomena in natural or designed systems.

MS-C2.3:Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.

Science and Engineering Practices: 6

Analyzing and Interpreting Data, Asking Questions and Defining Problems

MS-P4.1:Construct, analyze, and/or interpret graphical displays of data and/or large data sets to identify linear and nonlinear relationships.

MS-P4.2:Use graphical displays (e.g., maps, charts, graphs, and/or tables) of large data sets to identify temporal and spatial relationships.

MS-P4.3: Distinguish between causal and correlational relationships in data.

MS-P4.4:Analyze and interpret data to provide evidence for phenomena.

MS-P1.1:Ask questions that arise from careful observation of phenomena, models, or unexpected results, to clarify and/or seek additional information.

MS-P1.3:Ask questions to determine relationships between independent and dependent variables and relationships in models.

High School

Disciplinary Core Ideas: 6

HS-ESS2.D1:The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space.

HS-ESS2.E1:The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co-evolution of Earth’s surface and the life that exists on it.


HS-ESS2.D4:Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere.


HS-ESS3.D2:Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities.

Cross Cutting Concepts: 4

Patterns, Cause and effect

HS-C1.5:Empirical evidence is needed to identify patterns.

HS-C2.1:Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.

HS-C2.2:Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system.

HS-C2.4:Changes in systems may have various causes that may not have equal effects.

Science and Engineering Practices: 4

Asking Questions and Defining Problems, Analyzing and Interpreting Data

HS-P1.1:ask questions that arise from careful observation of phenomena, or unexpected results, to clarify and/or seek additional information.

HS-P1.3:ask questions to determine relationships, including quantitative relationships, between independent and dependent variables

HS-P4.1:Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.

HS-P4.5:Evaluate the impact of new data on a working explanation and/or model of a proposed process or system.

Jump to this Static Visualization »