Jump to this Simulation/Interactive »
The Sun's Path

Australian National University

An interactive visualization tool to examine geocentric seasonal and latitudinal variability in solar energy reaching Earth's surface.

Learn more about Teaching Climate Literacy and Energy Awareness»

ngssSee how this Simulation/Interactive supports the Next Generation Science Standards»
Middle School: 2 Disciplinary Core Ideas, 3 Cross Cutting Concepts, 13 Science and Engineering Practices
High School: 1 Disciplinary Core Idea, 3 Cross Cutting Concepts, 7 Science and Engineering Practices

Climate Literacy
About Teaching Climate Literacy

Axial tilt of Earth governs incoming sunlight and seasonality
About Teaching Principle 1
Other materials addressing 1c

Notes From Our Reviewers The CLEAN collection is hand-picked and rigorously reviewed for scientific accuracy and classroom effectiveness. Read what our review team had to say about this resource below or learn more about how CLEAN reviews teaching materials
Teaching Tips | Science | Pedagogy | Technical Details

Teaching Tips

  • Make sure students read the directions before launching the interactive.

About the Science

  • An interactive that allows learners to investigate the path of the sun from any latitude on Earth.
  • Can be related to seasons and to why temperatures are high or low in certain months.
  • Passed initial science review - expert science review pending.

About the Pedagogy

  • Can provide insights for Essential Principle 1 on how the Sun drives Earth's climate system and Essential Principle 4 on variability of time and space.
  • Will require an instructor who is familiar with and comfortable with the astronomical aspects of the tool.

Technical Details/Ease of Use

  • Good background materials for teachers.

Next Generation Science Standards See how this Simulation/Interactive supports:

Middle School

Disciplinary Core Ideas: 2

MS-PS3.B2:The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment.

MS-ESS2.D1:Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns.

Cross Cutting Concepts: 3

Systems and System Models, Patterns, Cause and effect

MS-C4.2: Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems.

MS-C1.3: Patterns can be used to identify cause and effect relationships.

MS-C2.2:Cause and effect relationships may be used to predict phenomena in natural or designed systems.

Science and Engineering Practices: 13

Developing and Using Models, Asking Questions and Defining Problems

MS-P2.1:Evaluate limitations of a model for a proposed object or tool.

MS-P2.2:Develop or modify a model— based on evidence – to match what happens if a variable or component of a system is changed.

MS-P2.4:Develop and/or revise a model to show the relationships among variables, including those that are not observable but predict observable phenomena.

MS-P2.5:Develop and/or use a model to predict and/or describe phenomena.

MS-P2.6: Develop a model to describe unobservable mechanisms.

MS-P2.7:Develop and/or use a model to generate data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales.

MS-P1.7:Ask questions that challenge the premise(s) of an argument or the interpretation of a data set.

MS-P1.1:Ask questions that arise from careful observation of phenomena, models, or unexpected results, to clarify and/or seek additional information.

MS-P1.2:ask questions to identify and/or clarify evidence and/or the premise(s) of an argument.

MS-P1.3:Ask questions to determine relationships between independent and dependent variables and relationships in models.

MS-P1.4:Ask questions to clarify and/or refine a model, an explanation, or an engineering problem.

MS-P1.5:Ask questions that require sufficient and appropriate empirical evidence to answer.

MS-P1.6:Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.

High School

Disciplinary Core Ideas: 1

HS-ESS2.D1:The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space.

Cross Cutting Concepts: 3

Cause and effect, Systems and System Models

HS-C2.4:Changes in systems may have various causes that may not have equal effects.

HS-C4.3:Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.

HS-C4.4:Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models.

Science and Engineering Practices: 7

Asking Questions and Defining Problems, Developing and Using Models

HS-P1.1:ask questions that arise from careful observation of phenomena, or unexpected results, to clarify and/or seek additional information.

HS-P1.2:ask questions that arise from examining models or a theory, to clarify and/or seek additional information and relationships.

HS-P1.3:ask questions to determine relationships, including quantitative relationships, between independent and dependent variables

HS-P1.4:ask questions to clarify and refine a model, an explanation, or an engineering problem

HS-P1.5:Evaluate a question to determine if it is testable and relevant

HS-P2.3:Develop, revise, and/or use a model based on evidence to illustrate and/or predict the relationships between systems or between components of a system

HS-P2.6:Develop and/or use a model (including mathematical and computational) to generate data to support explanations, predict phenomena, analyze systems, and/or solve problems.

Jump to this Simulation/Interactive »