Jump to this Static Visualization »
Animated Wind Capacity Map

National Renewable Energy Laboratory (NREL)

This map shows how much electrical power is produced from wind in each state from 1999 through 2010. The animation shows a general increase in the amount of wind power produced per state and the number of states producing it.

Learn more about Teaching Climate Literacy and Energy Awareness»

ngssSee how this Static Visualization supports the Next Generation Science Standards»
Middle School: 3 Cross Cutting Concepts
High School: 4 Performance Expectations, 9 Disciplinary Core Ideas, 2 Cross Cutting Concepts

Notes From Our Reviewers The CLEAN collection is hand-picked and rigorously reviewed for scientific accuracy and classroom effectiveness. Read what our review team had to say about this resource below or learn more about how CLEAN reviews teaching materials
Teaching Tips | Science | Pedagogy | Technical Details

Teaching Tips

  • Students can explore potential for wind power at locations around their own or other states.
  • Downloadable spreadsheet of tabular data enables users to produce and compare graphs of patterns they notice in the animated maps. State-by-state data allows students to compare wind power in their own state to others.
  • Though installed wind power has increased very rapidly, students should be aware that the total amount of electricity produced by wind is still very small compared with the amount produced by fossil fuels.

About the Science

  • Time series of maps showing installed wind capacity (in megawatts) by state in the U.S.
  • Passed initial science review - expert science review pending.

Technical Details/Ease of Use

  • Mapped data are available as a downloadable animated GIF, a series of still JPG images, and printable PDFs.
  • State-by-state data are also available as a downloadable spreadsheet.

Next Generation Science Standards See how this Static Visualization supports:

Middle School

Cross Cutting Concepts: 3

Energy and Matter, Patterns

MS-C5.3:Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion).

MS-C5.4:The transfer of energy can be tracked as energy flows through a designed or natural system.

MS-C1.4:Graphs, charts, and images can be used to identify patterns in data.

High School

Performance Expectations: 4

HS-PS3-3: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy

HS-ESS3-2: Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.

HS-ETS1-1: Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Disciplinary Core Ideas: 9

HS-PS3.B4:The availability of energy limits what can occur in any system.

HS-PS3.D1:Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment.

HS-ESS3.A1:Resource availability has guided the development of human society.

HS-ESS3.A2:All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks as well as benefits. New technologies and social regulations can change the balance of these factors.


HS-ESS3.C1:The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources.

HS-ESS3.C2:Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation.


HS-ETS1.A2:Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities

Cross Cutting Concepts: 2

Patterns, Energy and Matter

HS-C1.5:Empirical evidence is needed to identify patterns.

HS-C5.3:Energy cannot be created or destroyed—only moves between one place and another place, between objects and/or fields, or between systems.

Jump to this Static Visualization »