Jump to this Activity »
Tropical Atlantic Aerosols
http://mynasadata.larc.nasa.gov/lesson-plans/?page_id=474?&passid=56

Rex Roettger, NASA - My NASA Data Collection

Students use real satellite data to determine 1) where the greatest concentrations of aerosols are located during the course of a year in the tropical Atlantic region and 2) their source of origin. This is an inquiry-style lesson where students pull real aerosol data and attempt to identify trends among data sets.

Activity takes about one 50-minute class period. Computer access is very desirable for effectiveness of lesson

Discuss this Resource»
Learn more about Teaching Climate Literacy and Energy Awareness»

Climate Literacy
About Teaching Climate Literacy

Role of aerosols in climate system
About Teaching Principle 2
Other materials addressing 2e

Energy Literacy

Environmental quality is impacted by energy choices.
Other materials addressing:
7.3 Environmental quality.
Earth's weather and climate is mostly driven by energy from the Sun.
Other materials addressing:
2.3 Earth's climate driven by the Sun.
Greenhouse gases affect energy flow through the Earth system.
Other materials addressing:
2.6 Greenhouse gases affect energy flow.

Excellence in Environmental Education Guidelines

1. Questioning, Analysis and Interpretation Skills:C) Collecting information
Other materials addressing:
C) Collecting information.
1. Questioning, Analysis and Interpretation Skills:E) Organizing information
Other materials addressing:
E) Organizing information.
2. Knowledge of Environmental Processes and Systems:2.1 The Earth as a Physical System:C) Energy
Other materials addressing:
C) Energy.

Notes From Our Reviewers The CLEAN collection is hand-picked and rigorously reviewed for scientific accuracy and classroom effectiveness. Read what our review team had to say about this resource below or learn more about how CLEAN reviews teaching materials
Teaching Tips | Science | Pedagogy | Technical Details

Teaching Tips

  • Students should have access to maps, atlases, and globes.
  • Educator might want to get the graphs and other documents ahead of time, but students need to view color graphs in color. Educator needs either color copy or computers to view. Graphs are preferably viewed on a computer.
  • Extension activity poses the question: "Will the data of aerosols and hurricanes show a relationship?" The trend is not easily identifiable, thus the inquiry-style lesson. Educator should expect to guide students' ideas as they examine the data.
  • To reduce in-class activity time and preserve all lesson objectives, have students look at all links the night before.
  • In order to complete activity in suggested time frame (50-minute class session), educator should download all documents for students, but this may take away from the data exploration objective of the lesson.

About the Science

  • The use of Earth Observatory and NASA Data makes for excellent learning.
  • A great way to reach understanding of radiative effects of aerosols, implications to climate, and NASA satellite observations.
  • A lot of background information and data sources are provided.
  • Comment from scientist: Not an appropriate description that dust leads to clouds which lead to storm formation. Needs clarification by educator.

About the Pedagogy

  • Educator can download attached PDF teaching tips.
  • Educator should be trained or experienced in inquiry-style teaching due to the open-endedness of the lesson.
  • Students will need familiarity with computers to navigate the lesson.

Technical Details/Ease of Use

  • Downloads times from the database can be significant.

Disciplinary Core Ideas

MS-ESS2.D1: Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns.

HS-ESS2.D1: The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space.

HS-ESS3.D1: Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts.

HS-ESS3.D2: Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities.

Science and Engineering Practices

MS-P2.7: Develop and/or use a model to generate data to test ideas about phenomena in natural or designed systems, including those representing inputs and outputs, and those at unobservable scales.

MS-P3.2: Conduct an investigation and/or evaluate and/or revise the experimental design to produce data to serve as the basis for evidence that meet the goals of the investigation

MS-P4.2: Use graphical displays (e.g., maps, charts, graphs, and/or tables) of large data sets to identify temporal and spatial relationships.

MS-P5.1: Use digital tools (e.g., computers) to analyze very large data sets for patterns and trends.

MS-P6.2: Construct an explanation using models or representations.

MS-P1.7: Ask questions that challenge the premise(s) of an argument or the interpretation of a data set.

MS-P1.1: Ask questions that arise from careful observation of phenomena, models, or unexpected results, to clarify and/or seek additional information.

MS-P1.3: Ask questions to determine relationships between independent and dependent variables and relationships in models.

MS-P1.6: Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.

HS-P1.3: ask questions to determine relationships, including quantitative relationships, between independent and dependent variables

HS-P2.2: Design a test of a model to ascertain its reliability.

HS-P3.3: Plan and conduct an investigation or test a design solution in a safe and ethical manner including considerations of environmental, social, and personal impacts.

HS-P4.1: Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.

HS-P6.1: Make a quantitative and/or qualitative claim regarding the relationship between dependent and independent variables.

HS-P6.2: Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.

HS-P6.4: Apply scientific reasoning, theory, and/or models to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion.

Cross-Cutting Concepts

MS-C7.4: Systems in dynamic equilibrium are stable due to a balance of feedback mechanisms.

MS-C1.3: Patterns can be used to identify cause and effect relationships.

MS-C2.2: Cause and effect relationships may be used to predict phenomena in natural or designed systems.

HS-C1.4: Mathematical representations are needed to identify some patterns.

HS-C1.5: Empirical evidence is needed to identify patterns.

HS-C2.2: Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system.

HS-C3.5: Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth).

HS-C7.3: Feedback (negative or positive) can stabilize or destabilize a system.


Jump to this Activity »



Have you used these materials with your students? Do you have insights to share with other educators about their use? Please share with the community by adding a comment below.

Please use this space only for discussion about teaching with these particular materials.
For more general discussion about teaching climate literacy please use our general discussion boards.
To report a problem or direct a comment to the CLEAN project team please use our feedback form (or the feedback link at the bottom of every page).
Off-topic posts will be deleted.

Join the Discussion


Log in to reply